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Abstract

In a series of papers, Olsson (1994, 1995), Olsson & Oliger (1994), Strand (1994), Gerritsen

& Olsson (1996), Yee et al. (1999a,b, 2000) and Sandham & Yee (2000), the issue of nonlinear

stability of the compressible Euler and Navier-Stokes Equations, including physical boundaries,

and the corresponding development of the discrete analogue of nonlinear stable high order

schemes, including boundary schemes, were developed, extended and evaluated for various fluid

flows. High order here refers to spatial schemes that are essentially fourth-order or higher away

from shock and shear regions. The objective of this paper is to give an overview of the progress

of the low dissipative high order shock-capturing schemes proposed by Yee et al. (1999a,b,

2000). This class of schemes consists of simple non-dissipative high order compact or non-
compact central spatial differencings and adaptive nonlinear numerical dissipation operators

to minimize the use of numerical dissipation. The amount of numerical dissipation is further

minimized by applying the scheme to the entropy splitting form of the inviscid flux derivatives,

and by rewriting the viscous terms to minimize odd-even decoupling before the application of

the central scheme (Sandhaln & Yee).

The efficiency and accuracy of these schemes are compared with spectral, TVD and fifth-

order WENO schemes. A new approach of Sjogreen & Yee (2000) utilizing non-orthogonal

multi-resolution wavelet basis functions as sensors to dynamically determine the appropriate

amount of numerical dissipation to be added to the non-dissipative high order spatial scheme

at each grid point will be discussed. Numerical experiments of long time integration of smooth
flows, shock-turbulence interactions, direct numerical simulations of a 3-D compressible tur-

bulent plane channel flow, and various mixing layer problems indicate that these schemes are

especially suitable for practical complex problems in nonlinear aeroacoustics, rotorcraft dy-

namics, direct numerical simulation or large eddy simulation of compressible turbulent flows

at various speeds including high-speed shock-turbulence interactions, and general long time

wave propagation problems. These schemes, including entropy splitting, have also been ex-

tended to freestream preserving schemes on curvilinear moving grids for a thermally perfect

gas (Vinokur & Yee '-)000).

I. Motivation and Overview

Strong theoretically based high order high-resolution shock-capturing schemes have domi-

nated algorithm development for fluid flows for nearly two decades. During the 1990's, the
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focus was on increasing the order of accuracy for the interior grid points of the computa-

tional domain with stable numerical boundary conditions generally not included as part of the

theoretical development. Multidimensional upwinding and high order unstructured or finite

element constructions have flooded the computational fluid dynamics (CFD) literature. The

majority of these schemes are either too CPU intensive for practical applications or they axe

still in the development stage. In spite of their high-resolution capability for rapidly evolving

flows and short time integrations, these schemes often exhibit undesirable amplitude errors

for long time integrations. On the other hand, simplicity, efficiency and highly parallelizable

robust algorithms are the major requirements in industrial, geophysical, space exploration and

military practical CFD applications. The objective of this paper is to give an overview of the

progress of a class of simple, highly parallelizable high order shock-capturing schemes that
meets many of the requirements for practical computations, especially for long time integra-

tions of unsteady flows. For ease of reference, "schemes" or more precisely "interior schemes"

here generally refer to spatial difference schemes for the interior grid points of the computa-
tional domain, whereas "boundary schemes" are the numerical boundary difference operators

for grid points near the boundaries. However, without loss of generality, we also adopt the

conventional terminology of denoting "scheme" as either the "combined interior and boundary
schemes" or just the "'interior scheme" interchangeably within the context of the discussion.

Before 1994. rigorous stability estimates for accurate and appropriate boundary schemes as-

sociated with fourth-order or higher spatial interior schemes were the major stumbling block in

the theoretical development of combined interior and boundary schemes for nonlinear systems

of conservation laws. Spatial nonlinear stability of initial boundary value problems (IBVPs)

goes hand-in-hand with the appropriate amount of nonlinear numerical dissipation required to

stabilize the combined interior and boundary schemes. Tile delicate balance of the numerical

dissipation for stability without the expense of excessive smearing of the flow physics after long

time integrations poses a severe challenge for unsteady flow simulations of this type. Actually,

there are two possible sources of stabilizing mechanisms; namely. (a) from the governing equa-

tion level and (b) from the numerical scheme level. Employing a nonlinear stable form of the

governing equations 'more conditioned form of the PDE) in conjunction with the appropriate

nonlinear stable scheme for IBVPs is one way of minimizing the use of numerical dissipation.

The major tool used to overcome the stumbling block is a generalized energy method. The

basic building block in establishing a stable energy estimate for high order spatial central

schemes for nonlinear hyperbolic conservation laws relies on the aforementioned mechanisms

(a) and (b). From the governing equation level, a special transformation of the conservation

laws to an appropriate form for the application of the continuous energy estimate for a stable

IBVP of the governing equations is needed. From the numerical scheme level, a compatible

boundary scheme for high or,ter central interior schemes that satisfy the discrete analogue of

the continuous enerD" estimate is needed. See Strand (1994), Olsson (1995)_ Olsson & Oliger

(1994) and references cited.

Olsson proved that an energy estimate can be established for second-order central schemes.

To obtain a rigorous energy estimate for high order central schemes, one must apply the

scheme to the split form of the inviscid governing equation. For the Euler equations, the

transformation consists of a convex entropy flmction that satisfies a mathematical entropy

condition. This mathematical entropy flmction, in this case, can be a flmction of the physical

entropy. Therefore, the resulting splitting is hereafter referred to as entropy splitting for ease

of reference. Here, the entrop.v splitting should not be confused with the traditional flux vector

splittings such as the Steger and Warming splitting (1981) or other variants. The traditional

flux vector splitting splits the flux function into different parts and most often into upwind



and downwindportions. However,the entropysplitting splits the flux derivatives and the
time derivative of the conservativedependentvariablesusingthe propertiesof the chosen
mathematicalentropy function and the symmetrizabilityof the conservationlaws,without
referenceto anyupwinding.For theviscousterms,only symmetryis neededin thederivation
of the ener_" estimate. Thesedevelopmentshavemadehigh order non-dissipativespatial
centralschemesof renewedinterestto CFD practitionerswheresimplicity,efficiencyand high
parallelizabilityaretheir trademark.

Therecentlydevelopedhighorderlow-dissipationshockcapturingschemesusingcharacter-
istic filters of Yeeet al. (1999a)fit in the entropysplitting framework.Insteadof applyinga
scalardissipationor filter (Gerritsen& Olsson),theysupplynonlinearfiltersbasedon, locally,
the differentwavecharacteristicsof the inviscid flux. For complexshockwaves,shearand
turbulenceinteractions,onehasbetter controlof the amountof dissipationassociatedwith
eachwave.Forefficiency,Yeeet al. proposeda combination of a highorderbaseschemeand
a nonlinearfilter operator. Thebaseschemeconsistsof narrowgrid stencilhighordercompact
or non-compactcenterednon-dissipativeclassicalspatialdifferencings.Thefilter consistsof a
product of the dissipativeportion of a low order total variation diminishing(TVD), essen-
tially non-oscillatory(ENO) or weightedENO (WENO) schemeand anartificial compression
method(ACM) sensor.In contrastto hybridschemesthat switchbetweenspectralor spectral-
like non-shock-capturingschemesandhighorderENO schemes,the highordernon-dissipative
baseschemeis alwaysactivated.The roleof the ACM sensoris to reducethe amountof nu-
mericaldissipationawayfrom shockandshearregions.As an alternativeto the ACM sensor,
Sjogreenand Yee(2000)utilized non-orthogonalwaveletbasisfunctions _ multi-resolution
sensorsto dynamicallydeterminethe amountof nonlinearnumericaldissipationto be added
at eachgrid point. The resultingsensorfunction is alsoreadily usablefor grid adaptation
purposes. The final grid stencil of theseschemesis five points in eachspatial direction if
second-orderTVD schemesareusedasfilters, andsevenpointsif second-orderENO schemes
areusedasfilters for a fourth-orderbasescheme.Studiesshowedthat higheraccuracywas
achievedwith lessCPU time and fewer grid points when compared with that of standard high

order TVD. positive. ENO or WENO schemes. Table 1 shows the flow chart of the schemes.

The studies in Yee et al. (1999b, 2000) and Sandham Sz "fee indicate that entropy splitting

can improve the overall stability of the scheme, and that the amount of numerical dissipation,

if needed, is less than for the unsplit approach. They view entropy splitting as a conditioned

form of the original governing equations. Here, "condition the governing equation" is different

from :'preconditioning of the flow equations or their discretized counterparts" in convergence

acceleration of time-marching to steady states. Their studies also indicate that entropy splitting

alone can improve nonlinear stability even when one employs boundary schemes that do not

satisfy the discrete generalized energy estimate. This stability property of the entropy splitting

is valuable not just for the class of schemes in question, but can also be applied to other schemes

commonly used in practical CFD applications. This emphasizes the fact that one should always

try to apply numerical schemes to a more conditioned form of the governing equations.

Extension of these schemes to freestream preserving schemes for 3-D curvilinear moving grids

for a thermally perfect gas is reported in Vinokur and Yee (2000). The main difficulty in the

extension of high order schemes to curvilinear grids is the high order numerical evaluation of the

geometric terms, arising from the coordinate transformation, to satisfy a coordinate-invariant

freestream preservation condition. The question of the extendibility of the entropy splitting

concept to other physical equations of state and evolutionary equation sets was examined

in Yee et al. (1999b. 2000). Their study shows that the entropy splitting can be formally



extendedto a thermally perfectgas,with the internal energybeing an arbitrary function
of temperature. For non-equilibriumflowswhich consistof a mixture of different species,
eachobeyinga thermally perfectgas law, extensionof the splitting is problematic. While
they wereable to provethe symmetryand homogeneitypropertiesrequiredfor the energy
estimate,the degreeof homogeneitycanonly be obtainedby solvinga systemof nonlinear
equations. In addition, to obtain the Jacobianof the transformationrequiredinvertinga
non-sparselinear system. It would thereforebe difficult to establishthe positivedefinite
conditionin closedform. Consequently, the extension of the method to non-equilibrium flows

is not practically feasible. If the homogeneity condition is not required, then one can use

symmetry variables based on the pfiysical entropy, as was shown by Chalot et al. (1990). In

this case, the resulting PDEs are in pure non-conservative form and entropy splitting is no

longer applicable. For magnetohydrodynamics (MHD), the magnetic field has to be added

as a "'conservative" variable. But the square of the magnetic field is one of the terms in the

definition of the total energy. Thus, from dimensional arguments it is clear that one cannot

obtain the homogeneity condition. A similar situation exists for the artificial compressibility

method of treating incompressible flow. In the Maxwell equations, we have a linear system

of hyperbolic equations that can easily be symmetrized. Thus Strand's numerical boundary

operators are still valid, but entropy splitting is not needed. For non-equilibrium flows, if one

solves the species and flow equations separately in a loosely-coupled manner, then the flow

equations effectively satisfy a locally thermally perfect gas law and a 'local" form of entropy

splitting is applicable.

We would like to point out that although the formal extension of entropy splitting is lim-

ited to a thermally perfect gas, the numerical schemes themselves do not have this restric-

tion. Consequently. the schemes discussed here are applicable to equilibrium real gas, non-

equilibrium and the artificial compressibility method of treating incompressible flows, MHD

and the Maxwell equations.

II. Entropy Splitting and Numerical NIethods

This section reviews the entropy splitting formula for the 2-D compressible Euler equations

for a perfect gas in Cartesian coordinates. Formulas for tile corresponding 3-D case can be

found in Appendix B of Yee et al. (1999b) and for curvilinear moving grids for a thermally

perfect gas in Vinokur and Yee (2000). The mathematical theory is quite involved. Interested
readers are referred to references cited. The Yee et al. (1999a) and Sjogreen & Yee numerical

methods used in conjunction with the entropy splitting are also summarized.

2.1. Summary of Entropy Splitting for a Perfect Gas

In vector notation the 2-D compressible time-dependent Euler equations in conservation

form for an equilibrium real gas can be written, in Cartesian coordinates, as

Ut + F_ + Gv = O, (la)

where Ut = ou OF _ OG"57-" F_ = T_- and Gy --b'7 and the U, F, G,, are vectors given by

: G=
pv 2 + P | "
ev + pv J

(lb)



The dependentvariableU is the vector of conservative variables, and (p, u, v,p) T is the vector

of primitive variables. Here p is the density, u and v are the velocity components, pu and

pv are the x- and y-components of the momentum per unit volume, p is the pressure, e =

pie + (u 2 + v2)/2] is the total energy per unit volume, and E is the specific internal energy. For
a thermally perfect gas, the equation of state is p = pRT, where R is the specific gas constant,

and T is the temperature with _ = e(T). For constant specific heats (calorically perfect gas)

= c,,T, where c,_ is the specific heat at constant volume.

The eigenvalues associated with the flux Jacobian matrices of F and G are (u, u, u 4- c)

and (v,v,v :I=c), where c is the sound speed. The two u,u and v, v characteristics are linearly

degenerate. Hereafter, we refer to the fields associated with the u :1=c and v + c characteristics
as the nonlinear fields and the fields associated with the u, u and v, v characteristics as the

linear fields.

The entropy splitting for the compressible Euler equations for a perfect gas utilizes the

result of Harten (1983) on symmetric form for systems of conservation laws as the backbone.

The idea is to introduce a symmetry transformation from the vector of conservative variables

U to a new vector W, referred to as the "entropy variables". The transformation is chosen
so that Fw Of and Gw oc ou0w _ are symmetric, and Uw - is symmetric and positive= -- = 0W

definite. One then restricts the transformations to those that allow a special splitting of F,, G u

and Ut. This requires that the entropy variable W be chosen such that F(U(W)), G(U(W))

and U(W) are homogeneous flmctions of W of degree ,3. Then tile splitting of F_ results in

1 1 + 1FwW '3 # -t. (2)F_ - j_ 1 (FwW)_ + ,_-_-_Fwl_l_ - '3--

The corresponding W can be written as

w=P'[e-2ps-p(l+_) -pu -pv p]r; p, =-(pp-_)_ (3)
P

A similar splitting can be written for G,j and Ut. The forms for Fw and Gw can be found in

Yee et al. (1999b). Under the above conditions one can rigorously establish a bound on the

rate of growth of the energy norm in terms of the eigenvalues corresponding to the incoming

characteristic variables at the boundary of the domain.

s 1 14%. However,Normally. we need to compute Uw for the split form of Ut = -j3"fUt + -:j-g-fUw

we only consider a semi-discrete approach of applying temporal discretizations. Aside from

using the split form of the inviscid flux derivatives F_ and Gy. we do not have to use the

split form of Ut for implementation. Thus the final form of the semi-discrete entropy splitting

approach still can be expressed in terms of conservative and primitive variables, making possible

easy and efficient implementation in existing computer codes. The splitting parameter ,3 has

to satisfy 3 > 0 or ,3 < t__--_. Harten only considered 3 < __--_. This choice of'3 appears to be
"non-standard'" or "'nonphysical" in the sense that more than 100% of the conservative portion

and a negative non-conservative portion is used. Although Gerritsen and Olsson considered

the '3 > 0 range which Harten overlooked, they set /3 = 1 in conjunction with high order

central differencing schemes in all of their numerical examples. This choice of '3 corresponds to

splitting of the flux derivative into equal conservative and non-conservative proportions. Yee

et al. (1999b. 2000) recommend the use of fl > 0. The degree of improvement in stability over

the unsplit approach depends on the choice of '3. For/3 > 100 the benefit from the entropy

splitting is diminishing, since this case is close to the unsplit situation. In addition, the choice

of ;3 is also problem-dependent. For certain problems, e.g., complex shock-shear interactions,



the beneficialrangeof/3 can besmall. A combinationof waveletsasfilter (Sjogreen& Yee)
sensorsand grid adaptations(Gerritsen& Olsson)might be able to enlargethe beneficial
rangesincethe resultingwaveletsensorfunctionis alsoreadilyapplicablefor grid adaptation
purposes. The grid adaptation might be able to minimize the unddrresolvedgrid related
spuriousoscillationproducinginstability. This will bea subjectof future research.

2.3. Numerical Methods

The spatial discretizationsconsideredin Yeeet al. (1999a)consistof two parts, namely,
a baseschemeand a filter. When numericaldissipationsor filters arenot used,the scheme
consistsof only thebasescheme.If entropysplitting isused,the baseschemeisappliedto the
split form of the inviscidflux derivatives.Possiblenon-dissipativehighorderbaseschemesfor
F_ and G_ and the viscous terms (if present) are the standard fourth and sixth-order compact

and non-compact central schemes for the interior grid points.

There are many possible candidates for the filter operator in conjunction with high order

base schemes. For efficiency and ease of numerical boundary treatment, Yee et al. (1999a)

proposed using filter operators whose grid stencils have a width similar to that of the base
scheme. The filter operator consists of the product of a sensor and a nonlinear dissipation. See

Table 1 for the road map. Denote Fj.k as the discrete approximation of the inviscid flux F at

{jAx, kay). where Ax and ._kg are the grid spacings in the x- and y-directions and j and k

are the corresponding spatial indices. Let the filter vector in the x-direction be of the form

(4)

+½ is the modified form of the nonlinear dissipation portion of the standard numerical

flux. For characteristic based methods, the quantity Rj+½ (with the k index suppressed) is the

oF using Roe's average state (Roe's approximate Riemann solver).right eigenvector matrix of a-g

We define G_.k+½ in the same manner. The elements of _j+½ (with the k index suppressed),

' )_,.denoted by (Olj+__ are

½)-= . (5)

¢5+_ in (5) is the dissipative portion of the high resolution scheme resulting from using a TVD,
l

MUSCL with slope limiters. ENO or WENO scheme. Fornmlae for Ca+½ are well known and

can be found in the literature. See Yee et al. (1999a) for details and for a discussion of other

possible filters.

Here Sj{+½ is the sensor and is a mechanism for controlling excess numerical dissipation that
is inherent in the dissipative portion of standard high-resolution shock-capturing schemes. Two

possible sensors are considered. They are the ACM sensor and the wavelet sensor (Sjogreen &

Yee).

ACM Sensor: For the ACM filter, S{ = _05 The parameter _ is problem-dependent.J+½ +3"
For smooth flows that are absent of high shears, t¢ can be very small. It is used to minimize

spurious high frequency oscillation producing nonlinear instability associated with pure central

schemes, especially for long time integration problems. Different physical problems require

different values of _ because of the large variation in flow properties. The _ value may vary

from one characteristic wave to another, and from one region of the flow field to another region



with differentflowstructure. Thefunction01 is the Harten ACM gradient sensor but utilized
J+½

in a different context than Harten originally intended. For a general 2m + 1 point base scheme,
Harten recommended

0l
J+½

1%+½1T

Here the parameter p is an exponent > 1 and is not the "pressure p" in (1). Instead of varying

for the particular flow problem, one can vary p. For larger p, less numerical dissipation is

added. Note that by varying p >_ 1 in (7), one can essentially increase the order of accuracy of
- 1 , r l l and

the filter. The c_(_+_,are elements of Rj+½(UJ+I,k -_Ji,k). The corresponding aj+½, Cj+½

R:+½ using the MI]SCL formulation are instead functions of the left and right states of U.

Multi-Resolution Non-orthogonal Wavelet Sensors: To avoid the tuning of the arbitrary

-. _ l (Sjogreen &parameters _ and/or p in (,), one can replace nO +½ by a wavelet sensor wj+½
Yee, 2000). With a proper choice of the wavelet basis function, we have a better control

on the proper distribution of numerical dissipations leading to a more accurate simulation

than the ACM sensor. Wavelets were originally developed for feature extraction in image

processing and for data compression. It is well known that the regularity of a function can be
determined from its wavelet coefficients (Daubechies 1992, Mallat g: Zhong 1992) far better

than from its Fourier coefficients. By computing wavelet coefficients (of a suitable wavelet

basis flmction), we obtain very precise information about the regularity of the function in

question. As of the 1990's, wavelets are a new class of basis functions that are finding use in

analyzing and interpreting turbulence data from experiments. They also are used for analyzing
the structure of turbulence from numerical data obtained from DNS or large eddy simulation

(LES). See Farge (1992) and her later work. and Perrier et al. (1999). Recently, wavelets have

been used for grid adaptation (Gerritsen & Olsson) and to replace existing basis functions

in constructing more accurate finite element methods. Here we utilize wavelets to adaptively
control the amount of numerical dissipation that is inherent in standard high-resolution shock-

capturing schemes. The resulting wavelet sensors are readily available as more desirable g-rid

adaptation indicators than the commonly used grid adaptation indicators.

The wavelet sensor of Sjogreen & Yee is obtained by computing the so called "Lipschitz

Exponent" of a chosen vector to be sensed with a suitable multi-resolution non-orthogonal

wavelet basis function that is capable of detecting shocks, shears, spurious oscillations and

turbulence. Here. 'vectors or variables to be sensed" means the represented vectors or variables

that are suitable fi)r the extraction of the desired flow physics. The study in Sjogreen & Yee

showed that for a proper choice of the wavelet basis flmction, the wavelet sensor is physical

problem-independent for all of the test cases considered in Yee et al. (1999a,b). The variables
to be sensed can be the density and/or pressure, the characteristic variables, the a l:+½, or
the entropy variables W. There are two types of non-orthogonal wavelet basis functions that

Sjogreen & Yee considered. One is similar to the B-spline wavelet (Mallat & Zhong) used by

Gerritsen & Olsson for gid adaptation and the other is modification of the multi-resolution

method of Harten (1995) as a redundant multi-resolution wavelet. The B-spline wavelet sensor

requires slightly more arithmetic operations than the redundant form of Harten wavelet sensor.

The final form for ,,;!. _ involves mainly nested difference operators and least squares fits.

However, the theory is quite involved. The reader is referred to Sjogreen and Yee for the exact



formula and the referencescited for background.It is noted that the dual purposewavelet
sensors(dynamicnumericaldissipationcontrolsandgrid adaptationindicators)canbeastand
aloneoptionfor a varietyof schemesother than what is discussedhere.

It is emphasizedherethat neitherACM nor waveletsensorswill be ableto improvethe
accuracyat the shockand shearlocationsoverthe inherentshock-capturingcapabilityof the
nonlineardissipation.Theaccuracyof the shockandshearisdictatedby thechosennonlinear
dissipation.Theroleof thesensorsis to allow thefull amountof numericaldissipationinshock
and shearregions,and to limit the amountof numericaldissipationin regionsimmediately
awayfrom shockand shearlocationsandthe rest of theflow field. Therefore,with a suitable
sensor,one doesnot haveto useCPU-intensivehigh order high-resolutionshock-capturing
numericaldissipation,sincethis type of dissipationgenerallygivesa slightly moreaccurate
solutionawayfrom discontinuitiesbut exhibitssimilar shockand shearresolutionsassecond
or third-orderhigh-resolutionnumericaldissipations.

Full Discretizations: If a multistagetimediscretizationsuchasthe Runge-Kuttamethodis
desired,thehighordernon-dissipativespatialdifferencingbaseschemeisappliedat everystage
of the Runge-Kuttamethod. If viscoustermsarepresent,they usethesameorderandtypeof
baseschemeasfor the inviscidterms. Thereare two methodsfor applyingthe characteristic
filter. Method 1 is to apply the filter at everystageof the Runge-Kuttastep. Method2 is
to apply the filter at the end of the full Runge-Kuttastep. For inviscidand strongshock
interactions,method1might bemorestable.

If onedesiresa time discretizationthat belongsto the classof linear multistepmethods
(LM.Ms),e.g..trapezoidalrule or three-pointbackwarddifferentiation,then the filter can be

applied as a numerical dissipation vector in conjunction with the base scheme. The filter in

this case is evaluated at U n for explicit LMMs. For implicit LMMs additional similar filters

evaluated at the n + 1 time level might be involved. Alternatively, method 2 can be applied to

LMMs as well. In this case. we apply the filter after the completion of the implicit time step.

As an example, we illustrate the complete form of the schemes for Runge-Kutta methods

with the filters applied at the completion of a flfil Runge-Kutta time step. Let _,,÷1 be the

solution after one full Runge-Kutta time step using a non-dissipative spatial base scheme. Note

that if entropy splitting is employed, the base scheme is applied to the split form of the inviscid
flux derivatives. Then the solution at the next time level U '_+1 is

Here, #*

j±_.k and Gj_+_ are evaluated at _,_+1.

At [ _ _.
L

(8)

III. Numerical Examples

We summarize the performance of this class of schemes by illustrating four perfect gas test

cases with distinct flow properties. The first is inviscid and the last three are compressible full

Navier-Stokes computations. The four test cases are: (1) a 2-D inviscid horizontally convecting

vortex with periodic boundary conditions (BCs), (2) a 2-D vortex pairing in a time-developing

mixing layer with shock waves formed around the vortices, (3) a 2-D shock wave impinging

on a spatially evolving mixing layer where the evolving vortices must pass through a shock

wave. which in turn is deformed by the vortex passage, and (4) a direct numerical simulation

of a 3-D shock-free compressible turbulent plane channel flow. Figures 1-4 show the schematic,

flow conditions, gTid size and the computational domains of the four test cases.



In all of the computationsthe classicalfourth-orderRunge-Kuttatime discretization,and
the non-compactcentral spatial interior schemeswith the sameorder of accuracyand type
of baseschemefor the inviscidand viscousterms(if viscositiesaxepresent)areemployed.If
filters axeused,they areappliedat the endof the full Runge-Kuttatime step. Roe's(1981)
averagestatesare usedin (4). alongwith the Harten and Yee (Yee1989,Yeeet al. 1990)
second-orderupwind TVD dissipationportion for Cj+½1in (5). The parametersp and rn are

set to 1 and a small value of 10 -6 is added to the denominator of (7) to avoid an extra logical

statement for the ACM sensor. These will be notated as ACM or WAV (depending on whether

ACM or wavelet is used as sensor) with the following numbers indicating the order of the
interior base scheme for the inviscid and viscous terms. For example, ACM66 (WAV66) means

the use of sixth-order central as the base scheme for both the inviscid and viscous terms, and

ACM as sensor (wavelet as sensor). In order not to introduce additional notation, inviscid

flow simulations are designated by the same notation, with the viscous terms not activated.

Computations using entropy splitting are indicated by adding the letters "ENT" at the end

as in ACM66-ENT (WAV66-ENT). Computation using SJ+½ = 1, i.e, the sensor is turned off

and the upwind TVD dissipation portion is used as the filter, will be notated by TVD as in
TVD66. To examine the performance of the entropy splitting schemes where shock waves are

absent, the computations also employ only the non-dissipative central base schemes (without

the filters) designated as CEN66 and CEN66-ENT for sixth order unsplit and split forms of
the inviscid flux derivatives respectively. The fit/th-order WENO scheme of Shu (1997) will be

notated as WENOS.

For the Navier-Stokes computations involving entropy splitting, the splitting is applied to

the inviscid flux terms, and the symmetric form of the viscous flux is not used. Except for the

periodic BCs and the 3-D channel problem, compatible stable boundary schemes of Strand, and

Olsson are not used in order to study the benefit of the entropy splitting without considering

the accompanying stable boundary schemes as a complete package for stability consideration.

For the 3-D channel flow, a variant of the Strand boundary scheme developed by Carpenter

et al. (1998) is employed. For this problem, we also reformulate the viscous term to minimize

odd and even decoupling phenomena before the application of the central scheme (Sandham
L: Yee). For the second and third test cases, we lower the order of the base scheme near the

boundary points for the boundary scheme. For the third test case, for simplicity, slip wall

BC is used for the lower v-all, and the upper y-direction physical BC is overspecified and

nonreflecting BC is not used. The various ways of imposing physical and boundary schemes
for the different cases illustrate the robustness of the schemes and are an indication of the

added value of entropy splitting used in conjunction with interior and boundary schemes that

do not satisfy the generalized energy estimate. In order to assess the true performance of

the algorithln, no attempt is made to enhance the resolution using appropriate adaptive grid
procedures.

Figures 5-16 show the following comparisons:

. Numerical Dissipation Sensor Control vs. No Sensor: Comparisons of TVD66 and ACM66

for test cases 2 and 3 are shown in Figures 5 and 6. For test case 2, the ACM66 using a

41 x 41 grid produces a solution slightly more accurate (around the shear regions) than

TVD66 using a 101 × 101 grid. Note that the widths of the shock resolution of ACM66 and

TVD66 are the same as discussed in Section II (the paragraph before the full discretization

subsection). For the TVD66, ACM66 and WAV66 comparison, results should be compared

with Figures 12 and 13a results.
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2.

.

.

Entropy Splitting vs. Unsplit: Comparisons of CEN66 vs. CEN66-ENT, and ACM66
vs. ACM66-ENT for test case 1 are shown in Figures 7-10. The CEN66 diverged shortly

after t = 55 as opposed to over 6 times the inte_ation time longer for CEN66-ENT
with an almost perfect vortex preservation. For even longer time integrations, numerical

dissipation is needed. The amount for ACM66-ENT is less than for ACM66. For all

simulations involving entropy splitting for test case 1, we set the splitting parameter

= 1 and p* in (3) to be a constant (for isentropic flow). It seems that ACM66-ENT

3 less numerical dissipation over the ACM66. This factor isrequires a factor of at least
precisely the conservative portion of the entropy splitting of the inviscid flux derivatives.

This factor is, however, greatly reduced if high shear or shock waves are present.

Performance of the 5th-Order WENO Scheme: We compare WENO5 with ACM66 for

test cases 3 and 4, and various mixing layer problems, including hypersonic speed. In all

cases. WENO5 is more diffusive than ACM66. Figure 11 shows their comparison for test

case 3, where the normalized temperature contours (top two) and Mach contours (bottom

two) at t=113.16 on a 320 × 81 grid for WENO5 and a 321 x 81 grid for ACM66 are
shown. The vortices are more diffusive in the WENO5 computations. There is a minor

difference on the two sinmlations. The WENO5 code has a built-in nonreflecting BC on

the upper g-direction. It is too costly to fully compare the WENO5 with the 3-D channel

DNS computations where a fully developed turbulence statistics grid refinement study

was illustrated in Sandham & Yee (2000) using CEN44-ENT. For WENO5, a smaller

CFL number is used for stability. We compared the CPU time per time step and accuracy
in a loose sense with CEN44-ENT. We use the solution at t = 150 from the CEN44-ENT

simulation as the starting solution for WENO5 and integrate for a time length of 20 and

compare the turbulence statistics with the CEN44-ENT simulation. Our preliminary study
shows that WENO5 costs a factor of six more CPU time with less accurate turbulence

statistics than CEN44-ENT. See Hadjadj et al. (2001) for details.

ACM sensor vs. Wavelet sensor: Sample computations using WAV66 for test cases 2 and

3 are shown in Figures 12-14. The accuracy of the two wavelet sensors, B-spline wavelet

(WAV66-BS) or the redundant form of Harten wavelet (WAV66-RH) for test cases 1-3
(results not shown) is very similar and the effect on accuracy of the choice of the physical

vector (density and/or pressure, characteristic variables, a(. _ or entropy variables W) to
3-_ _

be sensed is not pronounced. In all cases, no physical problem-dependent parameter has

to be tuned. The accuracy compared very well with that of the corresponding best tuned

r_ for the individual test cases 1-3. In particular, the same accuracy was sustained, using

WAV66-ENT for either the B-spline or the redundant form of Harten wavelet sensors for

long time integrations of the vortex convection problems, as ACM66-ENT using _; = 0.01

and _kt = 0.01. Figure 12 shows the test case 2 results which should be compared with

the ACM66 results in Figure 5. Figures 13 and 14 show the test case 3 results. Figure 13a

shows the density and pressure contours computations by WAV66-RH using the density

and pressure as the functions to be sensed (see Figure 6 for comparison with ACM66).

Figure 13b shows the corresponding estimated Lipschitz exponent (alpha) for the density

and pressure at t=120 and the wavelet sensor itself. Figure 14a shows the wavelet sensor

applied to the density and pressure in the z and y-directions, and the square root of the

sum of these quantities in the x and y-directions. Figure 14b shows the corresponding

contours using the AC.M sensor. The wavelet sensor was able to extract the full feature
of the flow structure far better than the ACM sensor. See Sjogreen and Yee for the exact

formula and detailed numerical experiments.
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. Fourth-Order Central Differencing with Entropy Splitting vs. Spectral Method: A grid

refinement study of a compressible turbulent DNS and a comparison of CEN44-ENT

with the incompressible simulation using a spectral method for test case 4 are shown in

Figures 15 and 16. For the physical problems, background and grid refinement study,
see Sandham & Yee for details. These computations require very long time integrations

of the full Navier-Stokes equations before fully developed turbulence statistics can be

obtained. A very accurate data base is available for the 3-D DNS incompressible turbulence

simulations. For comparison, we use a Mach number of 0.1 and a Reynolds number of 180.

Very accurate fully developed turbulence statistics were obtained using coarse to moderate

grid sizes and without filters. The results compared well with the best spectral method of

incompressible Navier-Stokes flow formulations which may use de-aliasing, skew-symmetric
formulation or energy conservation (e.g., variables on a staggered grid) to obtain a robust

method. The angle brackets < > denote averages over the homogeneous spatial directions

and time while double primes denote deviation from mass-weighted (Favre) averages.

Concluding Remarks

In addition to the systematic theoretical development of simple parallelizable nonlinear stable
schemes for IBVPs. their extension and their abilities to accurately simulate a wide range of

physical applications for the Euler and Navier-Stokes equations, there are two key items that

might have potential impact on a wide range of complex practical computations. One is the

possible applicability of entropy splitting beyond the boundary of the theory indicated and the
other is the wavelet sensors.

The numerical results indicate that entropy splitting alone can improve nonlinear stability

even when one employs boundary schemes that do not satisfy the discrete generalized energy

estimate. This stability property is valuable not just to the class of schemes in question,

but might also be applicable to other schemes commonly used in practical CFD applications.

This finding actually is not surprising since one should, if possible, condition the governing
equations before the application of a suitable numerical method that can handle the type of

physics inherent in the physical model.

The proposed wavelet sensors, unlike the ACM sensor, can detect most of the distinct flow
features, including turbulence, leading to an automatic selection of the appropriate distribution

of numerical dissipation. In addition, these wavelet sensors are free of physical problem-

dependent parameters for the three test cases, and they are also good grid adaptation indicators

(Gerritsen £: Olsson) when compared to the ones commonly used in practice. Consequently, a

new dual purpose adaptive method is readily available leading to dynamic numerical dissipation

controls and improved grid adaptation indicators. This dual purpose adaptive method can
also serve as a stand alone option for other numerical schemes. These are subjects of ongoing
research.
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Tables Captions

Table 1. Flow Chart of the efficient low dissipative high order schemes.

Figures Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

Vortex pairing: Comparison of ACM66 with TVD66 (s0_+½ = 1) with reference

solution ACM44 (201 x 201 _id), illustrated by the normalized temperature contours

at time t = 160 on 101 x 101 and 41 x 41 _ids with n = 0.7 for the nonlinear fields
and n = 0.35 for the linear fields.

Shock-shear layer interaction: Comparison of ACM66 with TVD66 (s0_+½ = 1) with

reference solution ACM44 (641 x 161 grid), illustrated by the density contours at

t = 120 on a 321 x 81 grid with n = 0.35 for the nonlinear fields and _ = 0.175 for the
linear fields.

Convecting Vortex: Comparison of CEN66 with the exact solution (I.C.), illustrated

by density contours at t = 20, 30, 40, 50, 55 for At = 0.01 on a 80 x 79 grid.

Convecting Vortex: Comparison of CEN66-ENT with the exact solution (I.C.). illus-

trated by density contours at t = 100, 200, 300, 400, 500 for At = 0.01 on a 80 x 79

grid.

Convecting Vortex: Comparison of ACM66 with the exact solution (I.C.), illustrated

by density contours at t = 100,200,300,400,500, 600,700,800,900, 1000, 1100 for

At = 0.04 and n = 0.04 on a 80 x 79 grid.

Convecting Vortex: Comparison of ACM66-ENT with the exact solution (I.C.), illus-

trated by density contours at t = 100,200,300,400,500, 600,700,800,900, 1000, 1100
for _kt = 0.01 and _,:= 0.01 on a 80 x 79 grid.

Shock-shear layer interaction: Comparison of ACM66 with WENOS, illustrated by

the normalized temperature contours (top two plots) and Mach contours (bottom two

plots) at t = 113.16 on a 321 x 81 grid for ACM66 with n = 0.35 for the nonlinear
fields and _ = 0.175 for the linear fields, and a 320 x 81 for the WENO5.

Vortex pairing: WAV66-RH computations, illustrated by the density and normalized

temperature contours at time t = 160 on a 101 x 101 grid using the density and

pressure as fimctions to be sensed.

Shock-shear layer interaction: WAV66-RH computations illustrated by (a) density

and pressure contours (top 2 plots), and (b) estimated Lipschitz exponent _ and the

wavelet sensor itself ibottom 2 plots) using the density and pressure as functions to

be sensed at t = 120 on a 321 x 81 grid.

Shock-shear layer interaction: Comparison of ACM66 with WAV66 at t = 120 on a

321 x 81 grid with s = 0.35 for the nonlinear fields and n = 0.175 for the linear fields

for ACM66. illustrated by (a) contours of the sensor used by WAV66-RH applied to

the density and pressure in the x and y-directions, and the square root of the sum

of these quantity (top 3 plots), and (b) the corresponding contours using the ACM

sensor (bottom 3 plots).

3-D channeh Effect of grid refinement of a compressible turbulent DNS on (a) root
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meansquareof u, v and w and (b) Reynolds stress and total stress, using CEN44-ENT

and Carpenter et al. boundary scheme.

Fig. 16. 3-D channel: Comparison of root mean square of u, v, and w on a 30 × 30 × 101 grid

of a compressible turbulent DNS using CEN44-ENT and Carpenter et al. boundary

scheme with an incompressible turbulent DNS result on a 32 × 32 x 81 grid using

spectral method.
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DNSof 3-D CompressibleTurbulentChannelFlow
(M = O.1, Re = 180, Constantpressuregradient approach)
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Fig. 5.

VortexPairing at Mc = 0.8
Temperature Contours at t=160
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Vortex pairing: Comparison of ACM66 with TVD66 (_+½ = 1) with reference

solution ACM44 (201 x 201 grid), illustrated by the normalized temperature contours

at time t = 160 on 101 × 101 and 41 x 41 grids with _ = 0.7 for the nonlinear fields
and _ = 0.35 for the linear fields.

Fig. 6.

Shock Impingementon Mixing Layer
Density Contoursat t=120
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Shock-shear layer interaction: Comparison of ACM66 with TVD66 (_0_+½ = 1) with

reference solution ACM44 (641 x 161 grid), illustrated by the density contours at

t = 120 on a 321 x 81 grid with _ = 0.35 for the nonlinear fields and n = 0.175 for the
linear fields.
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Convecting Vortex: Comparison of CEN66 with the exact solution (I.C.), illustrated

by density contours at t = 20, 30, 40, 50, 55 for At = 0.01 on a 80 x 79 grid.

Density Contours (0.47 - 1.04, 0.03 inc

CEN66-ENT,dt=0.01

Fig. 8. Convecting Vortex: Comparison of CEN66-ENT with the exact solution (I.C.), illus-
trated by density contours at t = 100,200,300,400,500 for At = 0.01 on a 80 x 79
grid.
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Fig. 9. Convecting Vortex: Comparison of ACM66 with the exact solution (I.C.), illustrated

by density contours at t = 100,200,300,400,500, 600,700,800,900,1000,1100 for

At = 0.04 and ,_ = 0.04 on a 80 x 79 grid.
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Fig. 10. Convecting "vortex: Compaxison of ACM66-ENT with the exact solution (I.C.), illus-

trated by density contours at t = 100, 200,300,400,500, 600, 700,800,900, 1000, 1100
for At = 0.01 and ,_ = 0.01 on a 80 x 79 grid.





VortexPairingat Mc - 0.8
WAV66-RH,t-160, 101 x 101 grid
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Fig. 12. Vortex pairing: WAV66-RH computations, illustrated by the density and normalized

temperature contours at time t = 160 on a 101 × 101 grid using the density and
pressure as functions to be sensed.



Shock Impingement on MiXing Layer
WAV66-RH,t = 120, 321 x 81 grid
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Fig. 13. Shock-shear layer interaction: WAV66-RH computations illustrated by (a) density
and pressure contours, and (b) estimated Lipschitz exponent o_and the wavelet sensor
itself using the density and pressure as functions to be sensed at t = 120 on a 321 x 81
grid.



Shock Impingement on Mixing Layer
WAV66-RH,t-120, 321 x 81 grid
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Fig. 14. Shock-shear layer interaction: Comparison of ACM66 with WAY66 at t = 120 on a

321 x 81 grid with _: = 0.35 for the nonlinear fields and _: = 0.175 for the linear fields

for ACM66, illustrated by (a) contours of the sensor used by WAV66-Rtt applied to

the density and pressure in the x and y-directions, and the square root of the sum of

these quantity, and (b) the corresponding contours using the ACM sensor.
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Fig. 15. 3-D channel: Effect of grid refinement of a compressible turbulent DNS on (a) root

mean square of u, v and w and (b) Reynolds stress and total stress, using CEN44-ENT

and Carpenter it al. boundary scheme.
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Fig. 16. 3-D channel: Comparison of root mean square of u, v, and w on a 30 x 30 x 101 grid
of a compressible turbulent DNS using CEN44-ENT and Carpenter et al. boundary
scheme with an incompressible turbulent DNS result on a 32 x 32 x 81 grid using

spectral method.


